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Abstract
Monitoring High-tide Flooding (HTF) is challenging because
HTF usually spreads widely and forms localized water accu-
mulations depending on the natural processes and infrastruc-
ture. Stationary monitoring systems and satellite imaging
have their certain limitations. To date, citizen science is con-
sidered as the most promising means to monitor HTF, which
provides wide and continuous coverage of the community
and real-time first-hand witness of the flooding event. Here,
we present a flexible Artificial Intelligence (AI) -supported
citizen science platform for HTF monitoring. Flood extent is
identified through standard photogrammetry algorithms and
a Computer vision technique called monoplotting, and water
depth can be estimated using reference objects. In this paper,
monoplotting is employed to establish a correlation between
photos and the corresponding digital elevation model (DEM)
data, allowing to map the flood extent and water depth to
the DEM map to minimize the data uncertainty and enhance
the data credibility, resolution, and overall value.

CCS Concepts: • Computing methodologies → Artifi-
cial intelligence; Computer vision tasks; Scene under-
standing.

Keywords: High tide flooding, computer vision, monoplot-
ting, flood extent estimation
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1 Introduction
Relative sea-level rise is increasing flooding frequency world-
wide [9]. Besides the emphasized extreme floods such as
those from tropical storms, tidally driven flooding gives rise
to shallow (several centimeters) and wide-spreading floods,
which are far less documented, analyzed, and understood
[11]. NOAA (National Ocean and Atmospheric Agency) re-
ported that the relative seal-level rise along US coastlines has
risen by 0.34 m since 1920 and about 4 centimeters higher
than 2018; 75% of the 62 US East and Gulf Coast locations
witnessed an accelerating increasing trend of HTF [12]. Ac-
cording to the report, New Jersey is one of the most affected
states, where NOAA recorded 20 and 22 days of HTF at
Sandy Hook and Atlantic City in 2017, and 14 days at Cape
May in 2009. Last year, the national median HTF reached 4
days annually at the 98 monitored sites, and the New Jersey
sites reported up to 11 days of HTF, much greater than the
national median, and are projected to reach up to 160 days
of HTF annually by 2050 [12]. The increasing trend of HTF
is also evidenced by the evolving tidal ranges in the major
US estuaries. Talke and Jay [13] compiled the tidal records
of major estuaries and found the tidal ranges have doubled
in certain locations.
As a major contributor to “nuisance flooding” or “sunny

day flooding”, HTF disrupts transportation, sewage, and
other infrastructure systems, devaluates real estates, reduces
income and jobs, exposes health hazards to heighten pub-
lic health risks, and salinizes groundwater to deterioration
coastal ecosystems [8]. BecauseHTF is a repeating and chron-
ical hazard, the disruption heavily impacts on local economic
activity. For example, in Annapolis, Maryland, HTF has re-
duced downtown visits by 1.7% in 2017, which costs $12
million revenue loss in 16 surveyed businesses [5]. The visits
will further reduce by 24% with the projected sea-level rise
of 12 inches and make major impacts on the local commu-
nity [5]. These relatively more frequent, smaller floods may
prove to be more costly at some locations than large, infre-
quent extreme events [8]. High-quality and wide-coverage
data is urgently desired to support further and systematic
environmental and social studies.

MonitoringHTF is challenging becauseHTF usually spreads
widely and forms localized water accumulations depend-
ing on the natural processes and infrastructure. Stationary
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monitoring systems such as tidal and river gauges can only
capture a small fraction of the occurrence due to their fixed
location; satellite imaging is limited by orbits and spatial and
temporal resolution, so the chance of capturing the short-
term HTF with the right timing, acquisition location, and suf-
ficient resolution is considerably low. To date, citizen science
– an approach to collecting data through the participation
of the general public [1] – is considered the most promising
means to monitor HTF, which provides wide and continuous
coverage of the community and real-time first-hand witness
of the flooding event [8]. Moreover, HTF is more suitable to
be studied by citizen science because of less weather con-
straints and better predictability. Besides the high value in
education and outreach activities, citizen science has shown
exceptional value in providing key data for earth observation,
especially in collecting flooding data and supporting flood
management. For example, systems have been developed
to receive water level readings through mobile phone mes-
sages [7], web-based text inputs [10], and image uploading
[6]. The present project is targeted to address the data gap
of HTF observation using citizen science. In this study, a
novel citizen-science based approach is proposed to develop
a comprehensive map of flooded area containing informa-
tion about flood extent and water depth. In this regard, flood
extent estimation as one of the tasks of this approach, is
elaborated and a sample result is presented for the recent
HTF event in Newport Beach, California in July 2020.

2 Research Methods
In order to develop a flood map by means analyzing of pho-
tos and videos in social media the two different tasks of (i)
estimation of flood water depth, and (ii) estimation of flood
extent should be carried out by different methods.

2.1 Flood Water Depth Estimation
To further increase the value of citizen contributed data,
we plan to develop a deep learning model to automatically
assess water depths from collected photos using reference
objects. This method would be more accurate than the man-
ually estimation of water depth based on the approximate
size of available objects in the photos because humans have
difficulty to quantify water level by visual examination. Ac-
cording the method developed by Chaudhary et al. [3], it
is proposed to consider k discrete levels for water depth in
a way that level 0 indicates no flood water and level (k-1)
means that the water level is beyond the average human
height (170 cm). The classification is compared with refer-
ence objects of the average human height. Water depth can
be gauged using the reference object such as car wheels,
bicycles, curbs, human heights, traffic signs, safety cones,
etc. A deep learning model will be trained to recognize the
kind of the reference object such as safety cones, humans, or
car wheels. The percentage of the object submerged will be

converted to water depth using a database of typical object
heights.

2.2 Flood Extent Estimate
There are some studies in the literature that working on the
estimation of flood extent. In this regard deep learning mod-
els were employed to detect the flooded area in photos. By
means of pre-trained neural network with logistic regression
the flooding extent can be reliably detected in the photos
after sufficient training [2]. However, this method is not able
to convert the extracted information to geo-referenced data
that can be presented in a map. In this regard, a major issue
affecting citizen science’s data reliability and credibility is
the mismatch between the location of observed scene and
the location of the data collection device, e.g. the mismatch
between the location of the observed object used to estimate
water depth and the location of smart phone. A computer
vision technique called monoplotting is proposed to address
this issue and also estimating flood extent. Using the mono-
plotting method, a correlation between the collected photo
and the underlying Digital Elevation Model (DEM) or Digital
Surface Model (DSM) can be established. In other words,
the mentioned geolocation mismatching can be solved by
developing a pixel-level correlation between the DEM (or
DSM) and the contributed photo. In addition to this benefit,
as the monoplotting is able to transform data of photo into
the corresponding real-world geographical coordinate sys-
tem, it allow to do further analysis such as estimating the
extent of the flood if can be seen in the photo.

In the monoplotting technique, first the location and orien-
tation of the camera are estimated through matching several
Ground Control Points (GCP) (at least 6 points) in the image
and DEM. Once these points are determined on the corre-
sponding features such as street corners. Using an algorithm
and solving a collinearity equation and standard photogram-
metry algorithms in OpenCV, computer vision libraries in
Python, the pose of camera is estimated. The process of
matching the GCPs in this study is performed manually;
however, in our future studies an optimization method will
be developed to make the matching process semi-automatic.
After the GCPs are matched, a pixel-to-pixel correlation be-
tween the DEM and the collected photo is established, and
consequently, the geolocation of each pixel or feature in the
image can be estimated. The information in the photo such as
flood extent boundary and the location of reference objects
for which water depth was estimated can be determined and
mapped to the DEM using the pixel-level correlation.

2.3 Combining flood extent and water depth
information

Once the water depth is determined for the reference objects
available in a given picture, the geo-locations of those ob-
jects are obtained by monoplotting. The boundary points of
the flood extent are also estimated using monoplotting. As
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Figure 1. Social media photos from the high tide flood event
in Newport Beach, California in July 2020

Figure 2. (a) A photo of a flooded street in the Newport
Beach that shows the flood extent; (b) corresponding Google
Map street view photo

the location of boundary and objects points are now avail-
able, they can be projected to the DEM. A flood water depth
contour can be generated using the water depth and extent
estimates. Assuming the boundary of the flood extent has
water depth of zero, the reference-object based flood depth
estimates from all the flood reports will be used collectively
to develop a map of water depth. An optimization scheme
will be implemented to produce a contour with the geo-
referenced DEM. A regularization scheme will be adopted to
encourage the optimization toward the assumption that the
water surface is smooth, and flat.

3 Results
To demonstrate the feasibility of the proposed methods and
explain its significance, we performed an analysis for a photo
collected during the high tide flood occurred in Newport
Beach, California in July 2020. The flood event was driven
by a high tide event coupling high wind waves. Four photos,
shown in Fig. 1, extracted from a video uploaded to social
media. The photos were compared with Google maps street
view photos and the address of the street was found. The
process of finding the location for a large number of photos
can be performed by means of deep neural network models
based on matching the features in the photos and Google
street view photos along the streets of the flooded area. The
top left photo in Fig. 1 is selected for monoplotting analysis
to estimate the flood extent. Because the photo in analysis is
collected from social media, no GPS or camera meta data is
available, so we performed the monoplotting using manually
labeled 9 GCPs selected on street corners and building edges
to determine the camera coordinate and direction. For this
purpose, we used a high resolution DEM with 0.5-meter-cell
size available in 2016 USGS West Coast El-Nino Lidar data
[4].
After the location and orientation of the camera is de-

termined, the flood scene is successfully reconstructed and
confirmed by checking with Google Map, shown in Fig. 2.
Also, the estimated location of the camera can be seen in Fig.
3 both in DEM and Google satellite images. The top photo
in Fig. 2 shows the end of the flood extent (indicated by the
red dash line) and the information from monoplotting can
be used to map the line in DEM (Fig. 4). As a result, we can
follow the sides of the street from the camera to the end of
the flood extent to outline the inundation. Also, the water
depth values of seven locations estimated manually using
the car tires were mapped to the DEM in Fig. 4. The DEM-
referenced flooding information demonstrates the feasibility
of the proposed study and the potentials for improving the
results by generating flood water depth contour show the
value that AI techniques could add through visual data min-
ing. In addition, the citizen science data was shown largely
improved through the reduced geolocation ambiguity and
high resolution details of the data analysis. Also note that
extracting such information for water depth and camera lo-
cation will be automatic with the aid of deep neural network
models in our future studies. This will allow us to automati-
cally process high-volume citizen science data and provide
high-quality datasets in a wide and continuous timeline.

4 Conclusion and future work
The ongoing sea-level rise is driving an emerging type of
flooding, High-tide Flooding (HTF), which occurs during a
full-moon tide with or without prevailing winds or currents.
Using citizen science and a flexible and Artificial Intelligence
(AI)-supported platform for HTF monitoring, Flood extent
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Figure 3.The estimated camera location shown both in DEM
and Google satellite image

can be identified through a machine learning algorithm and
water depth can be estimated using reference objects. In ad-
dition, a computer vision technique called monoplotting is
used to establish a correlation between photos and corre-
sponding DEM data, leading to relatively more precisely map
the flood extent and water depth to the DEM map to mini-
mize the data uncertainty and enhance the data credibility,
resolution, and overall value. Although the presentedmethod
can be applied only for the regions where DEM is available
for, it can provide unique datasets of HTF to support satel-
lite missions to validate the flood and water body sensing.
The study will advance citizen-science based data processing
schemes, especially by involving AI techniques. Pilot studies
will demonstrate the feasibility and value of using citizen-
science data to validate and complement satellite-derived
flood sensing.
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