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ABSTRACT
Mobility is an indicator of human movement through space and
time. With the increasing availability of geolocated data (from GPS,
accelerometers, etc.), it is now possible to examine individual as
well as group human mobility patterns. Human mobility is influ-
enced by both intrinsic (i.e. personal motivations) and extrinsic (i.e.,
events like natural hazards or a pandemic like the COVID-19) fac-
tors. However, the intricate relationships between human mobility
patterns and sociodemographic characteristics in the context of a
pandemic are yet to be fully explored. Our goal is to overcome this
gap by using human mobility data at the census block group level
from mobile phones and combining those with social vulnerabil-
ity indicators to examine the overall spread of COVID-19 at local
spatial scales. We used 585,878 weekly visits to 37,871 points of
interests (POIs) from Safegraph to quantify mobility indices and
social distancing metrics in 2,820 census block groups in the city of
Los Angeles (LA) - before and during lockdown as well as during
the phase1 and phase 2 reopening. Finally, using supervised ma-
chine learning algorithms, we classified the census block groups
in LA into High, Medium and Low categories that represented
the vulnerability of these block groups based on the cumulative
number of occurrences of COVID-19 cases till July 24, 2020. Our
results indicate that the tree-based classifiers performed well in
comparison to the Support Vector Machines and Multinomial Logit
models. Gradient Boosting had the highest classification accuracy
of 97.4% COVID-19 with an AUC score of 0.987. The block groups
with high COVID-19 cases also had a high concentration of socially
vulnerable populations, high human mobility index and a low social
distancing index.

CCS CONCEPTS
• Information systems→Geographic information systems; •
Computingmethodologies→ Supervised learning; •Human-
centered computing→Empirical studies in collaborative and
social computing.
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1 INTRODUCTION
The recent outbreak of the coronavirus disease (COVID-19) has
significantly impacted millions of lives across the world. Human
mobility has played a very important role in the spread of the pan-
demic [17, 23]. At the beginning of the outbreak, the Centers for
Disease Control and Prevention (CDC) suggested the local govern-
ments across the U.S. to implement strict social distancing rules [31],
which contributed to the reduction of the COVID-19 spread[19].
However, cities across the US are still experiencing a rise in cases
as lockdowns have been lifted and people have resumed traveling
to different locations. Specifically, the city of Los Angeles (LA) has
been a global hotspot for COVID-19 for several reasons including
increase in mobility and failure to follow strict social distancing
guidelines owing to several underlying social and economic factors.

LA County followed a strict lockdown starting March 20,2020
which persisted until May 8,2020 [2]. On May 9th, 2020 [2], the
county started a restricted phase 1 reopening with essential busi-
nesses reopening with limited capacity. Phase 2 reopening started
on June 12th,2020 when more small and large businesses were re-
opened to mitigate the economic slowdown affecting thousands
of businesses [2]. However, the failure to meet state benchmarks
has put both the city and county of LA on the governor’s watchlist
[16, 34], which resulted in increased oversight and additional clo-
sures to combat the virus. Over the past few weeks (July 24, 2020
- August 10, 2020), the county reported 28,300 new cases that is
way above the standard for disease transmission [5]. Nonetheless,
the number of hospitalizations has been steady in the county with
1,896 patients with a confirmed or suspected case (as of August 10,
2020) of COVID-19. Less than 80% of ICU beds are occupied and
at least 75% of ventilators are available [5] (as of August 10, 2020).
The steady increase in the number of COVID-19 cases in the Los
Angeles area makes it crucial to understand what factors have led
to such an increase in cases such that effective actions can be taken
to contain the disease spread and reduce economic slowdown.

Previous research conducted on mobility data indicates the av-
erage distance to activities and the area size of activity spaces –
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are associated with neighborhood socioeconomic and spatial char-
acteristics [27]. Other studies have highlighted the importance of
accounting for varying income levels and human mobility to tackle
the COVID-19 crises. Huang et al. [28] have shown that counties
with higher income tend to react more aggressively in terms of re-
ducing more mobility in response to the COVID19 pandemic. Some
studies have also indicated that SARS-CoV and MERS-CoV spread
rapidly due to travel that increases social contact [21], which is no
different than what has been seen so far with COVID-19. Typically,
crowdsourced fitness apps [41], GPS trajectories, and accelerome-
ters [39] have been used to study humanmobility. Mobility has been
a key indicator to study infectious disease spread [36] including
COVID-19 [32]. Hence, this study characterized the possible spatio-
temporal spread of COVID-19 during the different time periods of
the outbreak by integrating human mobility data and contextual in-
formation about the demographic, socioeconomic, and distribution
of socially vulnerable populations.

The landscape of economic slowdown and the reduction in ac-
tivities since the beginning of COVID-19 is similar to what is ex-
perienced following a large-scale extreme event [11]. Like other
disasters, socio-economic characteristics as well as policies have
contributed to the spread of COVID-19, which include a lack of
strict social distancing measure[19], less use of masks in some
neighborhoods, exposure in beaches, lack of equitable distribution
of healthcare resources across neighborhoods [40] as well as differ-
ences in mobility patterns across neighborhoods. Among all these
factors, mobility plays an important role in the disease spread than
by other factors as seen in recent studies [17, 24, 32] as it captures
the dynamics of daily human movement. Although teleworking has
become the norm and has contributed to a reduction in mobility
even after lockdown/shelter-in-place policies have been lifted, the
service industry requires travel from home to work to meet daily
demands. Hence, recent studies have indicated that epidemiological
models should capture the effects of mobility pattern on COVID-
19 so that mitigation strategies can be undertaken for effective
reopening of the economy as well as reduction of a resurgence [42].

Social distancing is a long-established public health tool, which
reduces opportunities for an infectious disease to spread as well
as its overall transmission rate [15, 26]. Social distancing measures
include maintaining distance among individuals in a public setting,
limitations on gatherings and business operations, and shelter-in-
place. The more infectious the disease, the more it is necessary to
implement such social distancing measures at an early stage of the
spread to control transmission at early stages [12, 30]. As was seen
during COVID-19, social distancing has a detrimental impact on
economic activities, which has contributed to increasing mobility.

Given that the COVID-19 virus spreads from physical contact
as well as through air, mobility patterns (a proxy for virus spread)
along with COVID-19 cases and sociodemographic characteristics
were used to (i) examine and quantify the interactions between
mobility and social distancing measures, (ii) classify census block
groups in LA city into high, medium and low risk of experiencing
COVID-19 spread based on mobility, vulnerable populations and
current cases of COVID-19. This information can be used by stake-
holders for resource planning to reduce the spread of the disease
while helping socially vulnerable groups that generally experience
health disparity.

The remainder of the paper is organized into five sections. Sec-
tions 2 and 3 introduce to the study and site and provide a discussion
of the datasets used in the study. The algorithm and analytics im-
plemented are discussed in section 4. A discussion of results and
concluding remarks are provided in sections 5,6 and 7.

2 STUDY AREA
This study focused on the city of LA, California in the USA. The LA
metropolis is the second most populous metropolitan area in the
United States and is coterminous with the County of LA. According
to the U.S. Census [14], as of 2020, the city is home to about 10
million people in and more than 3.5 million households.

Figure 1: Map showing the population density in Los An-
geles along with the total number of confirmed COVID-19
cases as of July 24, 2020.

In 2000, the city was occupied by a little more than one-third
of the 2020 population (approx. 3.7 million people) and was the
second-largest city in the nation. The demographic distribution
within is quite significant (Figure 1) as a majority of the population
resides in the southern and northwestern part of the city in and
around downtown LA.
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Figure 2: Cumulative number of daily cases in LA county
based on recent data

The county of LA within which the city resides has become a
hotspot for the COVID-19 cases in the US. Since Phase 2 reopening
that started in (June 11, 2020), the county is experiencing a steep in-
crease in the daily number of cases with a record high of 4500 cases
in a single day in July as shown in Figure 2. As of July 24th, 2020,
the LA Public Health department has identified 173,995 positive
cases of COVID-19 and a total of 4,360 deaths across the county [3].
Figure 1 depicts the census block groups with the total number of
confirmed COVID-19 cases along with the spatial distribution of
population density (i.e the number of people per square kilometers
at the census tract level) in LA.

3 DATA
Mobile phone data from SafeGraph [6] obtained between March
8th through July 24th, 2020 were used in the study. This mobility
data were extracted from anonymized cell phone trajectories shared
by SafeGraph [6]. SafeGraph is a commercial entity that compiles
its dataset from several sources including mobile phone GPS data
and governmental open data, to build a comprehensive listing of
business establishments in the United States and Canada.

The mobility data captures weekly movements of thousands
of people at the spatial resolution of census block groups (CBGs),
which are geographical units that typically contain 600–3,000 peo-
ple. The data consists of mobility pattern information to points
of interest (POI), the number of visitors, visit counts, the median
dwell time at each POI, the distance from a mobile device from its
home location, and devices that were consistently found at home
locations during lockdown periods. The mobile phone data for the
2820 CBGs in LA contained 585,878 unique visits to a total of 37,871
points of interest (POI). The top POIs with maximum visits included
restaurants, grocery stores, religious establishments, fitness centers,
and supermarkets. Figure 3 shows the average weekly visits to the
different types of POIs before, during, and after the lockdown.

Figure 3: Distribution ofmedian dwell times betweenMarch
and July to different POIs in LosAngeles grouped by the type
of establishment

From the SafeGraph COVID-19 Data, mobility data about service-
oriented POIs such as retail shops, restaurants, movie theaters, and
fitness centers were extracted. For each POI, besides its daily foot
traffic, its geospatial location, and NAICS (North American Industry
Classification System) codes [37] were obtained. Of those who died,
the LA health department released the race and ethnicity infor-
mation for 4,069 people. Hence, other datasets representing social
vulnerability (i.e., social vulnerability index data from the CDC’s so-
cial vulnerability indicators for 2018 [22]), unemployment rate from
2018 American Community Survey [14], 2020 population density
from WorldPop [1] and Nitrogen Dioxide (NO2) from NOAA [10]
were used to examine the relationship of COVID-19 mortality cases
and spread with sociodemographic and environmental conditions
as well as mobility patterns.

4 METHODS
Using disparate datasets, we extracted features from sociodemo-
graphic characteristics, mobility patterns (in this context, mobility
index based on POI visit information was used) and COVID-19 cases
in LA to fit supervised classification models (Random Forest, CART,
Gradient Boosting along with Support Vector Machines and logis-
tic regression) to predict high, medium, low number of COVID-19
cases based on mobility patterns by accounting for spatial-temporal
changes in travel distance and stay-at-home as well as the effect of
social distancing policies on human movement.
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A three-step approach was implemented to classify the CBGs
by the number of confirmed COVID-19 cases. First meaningful
features from raw mobility, demographic and socioeconomic data
were extracted. Second, tree-based classifiers (CART) [13], Support
Vector Machines [18] and Multinomial Logistic Regression was
fitted to the feature vector by splitting it into training and test sets.
Finally, the accuracy of each classifier was examined and evaluated
using confusion matrices and Area Under the Curve (AUC) [25]
characteristics.The output provides information about potential
hotspots within LA city at the census block group level. Both ArcGIS
[20] and R 3.6.1 [38] statistical software were used to undertake the
analytics. Each of these steps is explained further in the following
sections.

4.1 Feature Extraction
The mobility data for LA city containing information for 37,871
POIs were obtained as a collection of flat text files. These files were
parsed and filtered into four different time period bins representing
- before lockdown (March 1 - March 19), during lockdown (March
20 - May 8), phase 1 reopening, and phase 2 reopening (June 12
- July 24), which were then joined to the CBGs (SafeGraph, 2020)
for further processing. Table 1 lists the different features extracted
along with the corresponding data sources .

Table 1: List of variables used to model COVID-19 spread

Features Source

Mean weekly mobility index SafeGraph[6]
Mean social distancing index SafeGraph[6]
Density of POIs visited SafeGraph[6]
Mean monthly 𝑁𝑂2 concentration NOAA[9]
Social vulnerability index CDC[22]
Population Density US Census Bureau[14]
Unemployment Rate LA County Open Data Portal[4]
Daily confirmed COVID-19 cases LA Public Health Department[3]

Mobility Index:Weekly patterns data had three different mobil-
ity attributes - distance from home location of a mobile device(𝐷𝑖 ),
median dwell time at a POI location (𝑇𝑖 ) and the total number of
visits to the POI location during the week (𝑁𝑖 ). Using this infor-
mation, a mobility index (𝑀𝑖𝑛𝑑𝑒𝑥 ) was computed by calculating a
percentile rank of the sum of normalized scores for all three vari-
ables (Equations 1,2) and aggregated the values for each census
block group (𝑖). The normalized scores were computed as a ratio
of the distance from home for each and the total distance for the
same POI within the same census block group. The𝑀𝑖𝑛𝑜𝑟𝑚 is the
standardized mobility index computed as a range of values between
0 and 1 using a min-max equalizer.

𝑀𝑖 = 𝐷𝑖𝑛𝑜𝑟𝑚 +𝑇𝑖𝑛𝑜𝑟𝑚 + 𝑁𝑖𝑛𝑜𝑟𝑚 (1)

𝑀𝑖𝑛𝑑𝑒𝑥 = 100 ∗ 𝑀𝑖

𝑀𝑖𝑛𝑜𝑟𝑚
(2)

Social Distancing Index: The social distancing index was com-
puted as a percentile rank (𝑆𝐷𝑖𝑛𝑑𝑒𝑥 ) of the normalized ratio (𝑆𝐷𝐼𝑛𝑜𝑟𝑚)
of the number of devices completely at home (𝑁𝑖 ) and the total
device count (𝑇𝑜𝑡𝑖 ) in each census block group (𝑖).

𝑆𝐷𝑖 =
𝑁𝑖

𝑇𝑜𝑡𝑖
(3)

𝑆𝐷𝑖𝑛𝑑𝑒𝑥 = 100 ∗ 𝑆𝐷𝑖

𝑆𝐷𝐼𝑛𝑜𝑟𝑚
(4)

POI density: A kernel density estimate [33] as per equation 5
was used to calculate the density of POIs visited in each census
block group 𝑃𝑂𝐼𝑖 using the number of POIs (𝑝𝑜𝑝𝑖 ) within a standard
distance 𝑑𝑖 , from the mean center of each census block group 𝑖 , and
a search radius 𝑟 . The density estimate was finally normalized using
using a min-max equalizer to obtain the normalized POI density.
The kernel density estimate at a location (x,y) is given by:

𝑃𝑂𝐼𝑖 =
1
𝑟2

∗
∑𝑛

𝑖=1

[ 3
𝜋
.𝑝𝑜𝑝𝑖

(
1 −

(𝑑𝑖
𝑟

)2)2]
;𝑤ℎ𝑒𝑟𝑒, 𝑑𝑖 < 𝑟 (5)

Social Vulnerability Index: The Centers for Disease Control’s
SVI score is available for each census tract, which was resampled
to get unique values for census block groups. The SVI indicates the
relative vulnerability of every U.S. Census tract to a natural hazard,
in this case the COVID-19 pandemic.

Figure 4: Variables used to compute the Social Vulnerability
Index

The SVI was calculated as percentile ranks for each group of
variables as per CDC SVI guidelines described by Flanagan et al.
[22]. Each census variable was ranked from highest to lowest vul-
nerability across all census block groups in LA with a nonzero
population. The variables were then grouped among four themes
(Figure 4). A percentile rank was calculated for each theme for each
census block group. Finally, an overall percentile rank for each
census block group was calculated using the sum of all variable
rankings.

Industrial Activity Recent studies have found that NO2 levels
have a direct correlation with industrial activities which might lead
to an increase in COVID-19 cases [7, 8], which indirectly could
be used as a proxy for mobility owing to work trips or commutes.
The average monthly NO2 concentration data from the TROPO-
spheric Monitoring Instrument (TROPOMI) instrument onboard
the Sentinel-5 Precursor (Sentinel-5P) satellite developed by the
European Space Agency’s Copernicus Programme was obtained for
LA from February through July, 2020. the TROPOMI instrument
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monitors trace gases (O3, CH4, CO, NO2, SO2) as well as the index.
The monthly NO2 concentration data used in this study is available
at 3.5 km x 3.5 km spatial resolution.

4.2 Supervised Learning
A supervised classification approach using five different algorithms
was used to categorize the amount of COVID-19 cases in each cen-
sus block group. Each supervised classification was modeled using
the number of COVID-19 cases as the response variable and the
extracted features along with the time period (before lockdown /
during lockdown/ phase1 reopening/ phase2 reopening) as inde-
pendent variables. For the model implementation, the data were
split into train and test sets with 70% data used for training and the
remaining 30% for testing each model respectively.

Tree-based classification models, such as classification and re-
gression tree (CART), Random Forest, and Gradient Boost have
been used in previous studies [29, 43] and have been found to per-
form better in infectious disease spread modeling. Hence, these
models were used for classifying the CBGs. In addition we also
used Support Vector Machines (SVM), a non-probabilistic linear
classifier and Multinomial Logit, a probabilistic logistic regression
to compare their predictive accuracy to the tree-based classifiers.

CART, also known as a decision tree method, is a powerful and
popular predictive machine learning technique that is used for
both classification and regression. Decision tree models work by
repeatedly partitioning the data into multiple sub-spaces so that
the outcomes in each final sub-space is as homogeneous as possible.
This approach is technically called recursive partitioning that allows
the use of different possible splitting rules to effectively predict
the category of COVID-19 cases (High/Low/Medium). Gradient
Boosting (XGB) is a special case of a decision tree that builds trees
one at a time such that each new tree helps to correct errors made by
the previously trained tree. However, XGB tends to overfit. Random
Forests (RF) train each tree independently using a random sample
of the data. This randomness helps to make the model more robust
than a single decision tree, and less likely to overfit on the training
data.

It was hypothesized that the census block groups with high
number of vulnerable population and unemployment rate as well
as a low social distancing index and high mobility index would
have a higher probability to be classified as high or very high zones
for COVID-19 cases and have the potential to emerge as hotspots.

4.3 Accuracy Assessment
Each of the five models was fitted with 70% training data using a
repeated 10-fold cross validationwith 3 repeats. Eachmodel resulted
inmean classification accuracy, class-wise sensitivity and specificity
along with F1-score and balanced accuracy. The true negative (TN),
true positive (TP), false negative (FN) and false positives (FP) were
used to calculate the accuracy metrics for each class 𝑖 given by
Equations 6 - 10.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(6)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
(7)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖 + 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦𝑖

2
(8)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗𝑇𝑃𝑖
2 ∗𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(9)

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑𝑘
𝑖=1

tp𝑖+tn𝑖
tp𝑖+tn𝑖+fp𝑖+fn𝑖
𝑘

; where, k = no. of classes
(10)

Cohen’s Kappa statistic [35] which is used to measure the agree-
ment of two raters (i.e., “judges”, “observers”) or methods rating on
categorical scales were used to quantify howmuch both raters agree
by chance. Equation 11 represents the Cohen’s Kappa statistics.

𝐾𝑎𝑝𝑝𝑎(^) = 𝑃0 − 𝑃𝑒
1 − 𝑃𝑒

(11)

where 𝑃0 is the proportion of observed agreement and 𝑃𝑒 is the
proportion of chance agreement. The values can range from 1 to +1,
where 0 represents the amount of agreement that can be expected
due to random chance, and 1 represents perfect agreement between
the raters.

(a) Before Lockdown (b) During Lockdown

(c) Phase 1 Reopening (d) Phase 2 Reopening

Figure 5: Maps showing the kernel density of POIs visited
before, during and after lockdown in Los Angeles
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5 RESULTS
The features listed in Table 1 were calculated as part of the feature
extraction step. The spatial distribution of the density of POIs visited
at different periods of time - before, during and after lockdown
regulations were imposed by the local authorities is shown in Figure
5. The dark red spots indicate areas where the POIs were more
visited as opposed to blue areas that represent areas with a low
number of POIs visited. POI density is also an indicator of how
many business establishments were operational before, during,
and after the lockdown and which communities were following
social distancing guidelines more stringently. All the feature layers
were converted to raster layers which were then used to fit the
classification algorithms.

(a) Before Lockdown (b) During Lockdown

(c) Phase 1 Reopening (d) Phase 2 Reopening

Figure 6: Maps showing the spatial distribution of Mobility
Index before, during and after lockdown in Los Angeles

Figure 6 visualizes the spatial distribution of the mobility index
along with the number of confirmed COVID-19 cases during the
periods of before lockdown (until March 19,2020), during lockdown
(March 19 - May 8, 2020), phase 1 reopening (May 9 - June 11, 2020)
and phase 2 reopening (June 12 - July 24, 2020) in LA. Evidently, the

number of cases declined before and during lockdown when the
mobility index declined and the social distancing index was high. It
is clear that the restrictions imposed by the local authorities had a
direct impact on the reduction in the number of daily cases across
LA. Figure 7 shows how the social distancing measures changed
over time spatially as more communities started to follow the dis-
tancing measures in comparison to certain communities where the
mobility index was higher despite social distancing measures.

(a) Before Lockdown (b) During Lockdown

(c) Phase 1 Reopening (d) Phase 2 Reopening

Figure 7:Maps showing the spatial distribution of Social Dis-
tancing Index before, during and after lockdown in Los An-
geles

The classification algorithms were used to classify the census
block groups into three categories of high, medium, and lowCOVID-
19 cases based on human mobility patterns, social distancing mea-
sures, industrial activity and social vulnerability indices. The hyper-
parameters for the random forest was set to 200 trees with a max
depth of 5. A linear kernel was used for SVM, but the CART and
Gradient Boost was trained with a maximum of 500 trees. Figure
8 shows the variability in the overall accuracy of all five models
using the training data and Table 2 lists the Kappa Statistic along
with AUC scores for each model to indicate the overall stability of
the models.
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Figure 8: Model accuracy assessment across different super-
vised learning algorithms

From all the models, the Random Forests and Gradient Boost per-
formed better overall compared to the other classification models.
Gradient boost had a higher Kappa statistic and AUC score than
Random Forests. Hence, Gradient Boost stood out to be the optimal
choice with highest accuracy and lower chance of overfitting.

Table 2: Accuracy metrics of different models with 10-fold
cross validation and 3 repeats

Model Accuracy Kappa AUC

1 SVM 90.5 % 0.853 0.955
2 MLN 91.3 % 0.867 0.960
3 RF 96.8 % 0.951 0.984
4 CART 65.9 % 0.457 0.806
5 XGB 97.4 % 0.960 0.987

Figure 9 shows the intensity of the number of COVID-19 cases
that are categorized into Low,Medium, andHigh classes. The census
block groups classified as High typically have more populations
with a social vulnerability index between 0.5 and 0.75 indicating
low socioeconomic status (SVI Theme 1), more disabled and elderly
population (SVI Theme 3), and higher unemployment rates (SVI
Theme 4).The language fluency of residents (SVI Theme 2) within a
census block group did not seem to affect the occurrence of COVID-
19 cases as the SVI were below 0.5 for all census block groups.

Additionally, the effect of household composition and disability
is more pronounced in Phase 2 reopening with High cases being
reported more frequently in CBGs with a more high concentration
of disabled population and single-parent households (Figure 10).
Social distancing was also found to have direct influence on the
number of confirmed COVID-19 cases. Most census block groups
classified as High had an overall social distancing index of less than
0.5 (Figure 11). This indicates that CBGs that followed strict social
distancing guidelines had a lower number of reported COVID-19
cases; therefore, they have a lesser risk of spreading the disease.

Themisclassification rate of eachmodel using confusionmatrices
of the trained data is presented in Table 3. Figure 12 shows the
confusion matrix of the Gradient Boost model as it had the highest

Figure 9: Map showing the predicted category of COVID-19
cases in each census block group of the city of Los Angeles

Figure 10: Variability of Social Vulnerability Indices by dif-
ferent themes based on predicted classes using test data

accuracy with the actual labels and predicted labels based on the
testing data.
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Figure 11: Variability of Social Distancing Index bypredicted
classes using test data

Table 3: Summary of misclassification rate for predicted
classes

Metrics CART MLN RF SVM XGB

Sensitivity 0.69 0.91 0.92 0.89 0.99
Specificity 0.81 0.95 0.97 0.95 0.99
Precision 0.62 0.92 0.99 0.91 0.98
Recall 0.69 0.91 0.98 0.89 0.99
F1 Score 0.63 0.91 0.99 0.90 0.98
Balanced Accuracy 0.75 0.93 0.98 0.92 0.99

6 DISCUSSION
The gradient boost stands out as the best model in terms of accuracy
and AUC score. Random Forest appears to have a high accuracy
as well, however, there is a higher variability around the mean
accuracy as shown in Figure 8 which could be due to model over-
fitting. Since gradient boosting does not use the individual trees,
but rather averages all the trees together, therefore, for a particular
data point (or group of points) the trees that over fit those points in
the model will be an average of the under fitted trees and the com-
bined average is adjusted accordingly by subsampling the features
randomly.The confusion matrix for XGB (Figure 12) indicates that
the model classified the low and high categories compared to the
high cases. The misclassification rate was highest for Multinomial
Logit and SVMs. The inaccuracies in classification mostly occur
as a result of missing mobility data. Since, the SafeGraph data is
only a sample of the actual mobility patterns across the study area,
places where we had missing information on mobility index and
social distancing are more prone to misclassification. With more
data, such inaccuracies in the model can be gradually overcome.

Despite their overall accuracy, it is clear from all the models that
the effect of mobility is more pronounced in census block groups
with high socially vulnerable populations and those maintaining
low social distancing measures ash shown in figures 10 and 11.
Based on the themes of the social vulnerability indices, it was found

Figure 12: Confusion Matrix of predicted COVID-19 case in
Los Angeles using Gradient Boost

that after the reopening phases, areas with a social vulnerability
index of 0.5 to 0.75 based on socioeconomic status (SVI Theme 1),
housing type and transportation (SVI Theme 4) shown in Figure 10
experienced high COVID-19 cases (classified as ’High’). The social
distancing index varies from 0.4 to 0.5 for these census block groups
and from 0.25 to 0.45 for CBGs classified as ’Low’. However, areas
with mobility index between 0.5 and 0.75 falls into ’High’ categories
of COVID-19 cases compared to areas with mobility index between
0.25 and 0.5 which are classified as ’Low’ (Figure 13).There are some
census block groups where the mobility is high but also follow a
strict social distancing measure, report a lower number of COVID-
19 cases as a joint effect of both factors is more pronounced in such
cases. Census block groups with a Medium number of COVID-19
cases have a mix of the socially vulnerable population residing in
those areas along with high mobility and less pronounced social
distancing measures (Figure 9). There a more census block groups
near downtown LA which has a high number of COVID-19 cases as
shown in Figure 9, which are caused not just due to high mobility
but also due to a lack of access to healthcare facilities [40].

7 CONCLUSION
The findings are based on the SafeGraph data, which represents
weekly human mobility patterns in LA. Hence, this data can be
considered as a good approximation of the actual human movement
and social distancing practices being followed over time in Los
Angeles. From these data and reported COVID-19 cases, it is clear
that social distancing is a useful tool to reduce COVID-19 spread,
which in itself is not surprising. What is surprising and of value is
that the block groups reporting a high number of cases also have
high socially vulnerable populations including high unemployment
rate and disabled populations. This is a cause for concern because (i)
based on the race and ethnic profile of diseased COVID-19 patients
reported by the LA Health Department, these block groups are
occupied by the high-risk population groups who if infected have
a high probability of mortality, and (ii) these CBGs are occupied
by unemployed and disabled populations who will be infected if
anyone of their family or community has a positive case and may
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Figure 13: Variability of Mobility Index by predicted classes
using test data

not be able to receive medical support due to disparity in access to
health facilities [40].

Although lockdown is a good solution to maintain social dis-
tancing and spread of the disease, it is not an effective solution
from economic perspective. Because social distancing appears to
be an effective measure to reduce exposure to the virus, mitigation
strategies like wearing masks and maintaining a certain distance
in public spaces should be continued to ensure the virus spread
is contained, especially, within the socially vulnerable population
groups. Given that the block groups with high number of cases
have high mobility index and high percentage of vulnerable pop-
ulation groups, it can be concluded that these block groups are
probably occupied by people working in the service sectors. While
it is not possible to stop these groups from traveling between home
and work, another strategy to contain the spread would be to have
targeted testing sites in the disadvantaged neighborhoods.

A major contribution of this study is that the framework de-
scribed in this study can be useful for practitioners to understand
heterogeneity across POIs, demographic groups, and neighbor-
hoods for future mitigation strategies. Although the COVID-19
disease has a global footprint, its impacts are felt at a local level
with a disparity in the number of cases and rates of spread. Hence,
more fine-grained assessments of the effects of reopening policies
need to be carefully addressed by local authorities to control further
spread of the pandemic.
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