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ABSTRACT
When linking spatio-temporal datasets, the kD-STR algorithm can
be used to reduce the datasets and speed up the linking process.
However, kD-STR can sacrifice accuracy in the linked dataset whilst
retaining unnecessary information. To overcome this, we propose
a preprocessing step that removes unnecessary information and
an alternative heuristic for kD-STR that prioritises accuracy in the
linked output. These are evaluated in a case study linking a road
condition dataset with air temperature, rainfall and road traffic
data. In this case study, we found the alternative heuristic achieved
a 19% improvement in mean error for the linked air temperature
features and an 18% reduction in storage used for the rainfall dataset
compared to the original kD-STR heuristic. The results in this paper
support our hypothesis that, at worse, our alternative heuristic will
yield a similar error and storage overhead for linking scenarios as
the original kD-STR heuristic. However, in some cases it can give a
reduction that is more accurate when linking the datasets whilst
using less storage than the original kD-STR algorithm.
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1 INTRODUCTION
The growth of smart and connected cities has introduced a range
of new urban spatio-temporal datasets that are voluminous, var-
ied and contain significant autocorrelation. Often, data scientists
wish to analyse multiple spatio-temporal datasets in the context
of each other. In some analyses, co-occurrence mining is used to
detect events that occur at the same time and location from different
datasets [11]. In other scenarios, supplementary datasets are used to
provide context and information about the instances in a primary
dataset. For example, Ding et al. used weather and demographic
data to augment traffic data in Shanghai [9], and Knittel et al. aug-
mented a mortality dataset with information from pollution and
other datasets [10]. This process is referred to as dataset linking or
augmenting, and is a common procedure when analysing datasets.

However, in recent years the volume of spatio-temporal datasets
has increased significantly making the linking process computation-
ally expensive or infeasible. This growth has been driven by new
and cheaper sensors, as well as the growth of urban populations.s
To tackle this problem, methods exist to reduce the quantity of
data that needs to be processed during linking. Amongst these, the
kD-STR algorithm can be used to reduce the quantity of data in the
datasets whilst minimising the information lost [17, 18]. However,
whilst kD-STR can be used to reduce the datasets, its aim is to min-
imise the error incurred in the original datasets. In the context of
linking datasets, it may be more beneficial tominimise the difference
between the features engineered using the raw and reduced datasets.
Furthermore, kD-STR fails to consider the characteristics of the
primary dataset when reducing the supplementary datasets. This
can lead to a less efficient reduction of the supplementary datasets
and less accurate feature engineering during the linking process
than could otherwise be achieved.

Therefore, the aim of this research is to decrease the error in-
curred when augmenting a primary dataset using supplementary
datasets that have been reduced with kD-STR. More precisely, in
this paper, we present three contributions:

(1) We discuss how a more efficient reduction of supplementary
datasets using kD-STR can be achieved by considering the
spatial and temporal characteristics of the primary dataset.

(2) We present an alternative kD-STR heuristic for reducing
supplementary datasets that improves accuracy in linking
scenarios. This heuristic prioritises information retention in
areas and time periods of the supplementary dataset that are
applicable to the primary dataset.
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(3) We demonstrate the utility of the alternative heuristic in a
case study which links road condition data with road traffic,
air temperature and rainfall datasets.

The remainder of this paper is structured as follows. In Section 2,
we present methods, including kD-STR, for linking spatio-temporal
datasets and reducing the storage overheads of such datasets. In Sec-
tion 3, we present the preprocessing step and alternative heuristic
proposed in this paper. In Sections 4 and 5 we present an empirical
study demonstrating the utility of this alternative heuristic. Finally,
in Sections 6 and 7 we discuss the impact of these results.

2 BACKGROUND
When linking datasets, the quantity of data can slow the process
significantly, often making the process infeasible. In this section,
we first discuss common methods for augmenting one dataset with
information calculated from one or more supplementary datasets.
Second, we discuss the kD-STR algorithm for reducing the quantity
of data stored in a dataset whilst minimising the information lost.

2.1 Linking Datasets
To augment a primary spatio-temporal dataset with information
from a supplementary spatio-temporal dataset, linking methods
aim to estimate the supplementary feature values at the time and
location appropriate for each primary instance1. For each primary
instance, one or more supplementary instances are selected and fea-
tures engineered over them. One simple but often-used method is
to select all supplementary instances within a fixed spatio-temporal
radius of the primary instance. This is referred to as neighbourhood
linking, and has been used in projects such as the Australian Urban
Research Infrastructure Network (AURIN) [16]. Neighbourhood
linking allows for different distance metrics to be used, such as Eu-
clidean distance, and allows for either separate spatial and temporal
distance limits or a combined spatio-temporal distance limit. In the
latter case, the spatial and temporal distance metrics are combined
by use of a weighting factor [6]. This allows for supplementary
instances that are spatially close but distant in time, and instances
that are spatially far apart but close in time, to be combined for a
more accurate estimate of the supplementary feature values. Other
examples of neighbourhood methods, including inverse distance
weighting of instances, can be found in literature [5, 10].

However, when the distribution of supplementary instances in
the spatial or temporal domains is highly varied, one primary in-
stancemay be linked tomany supplementary instances while others
are linked to few. When this is undesirable, nearest neighbour (NN)
methods, which select a fixed number of nearest supplementary
instances for each primary instance, are more appropriate. Again,
a weighting between the spatial and temporal distance metrics is
required to select the nearest supplementary instances to a primary
instance [19, 20, 22, 23]. Other methods for linking spatio-temporal
datasets include kriging and radial basis functions, as well as ma-
chine learning-based approaches [15]. In this paper, we use the
NN and neighbourhood methods as examples of linking functions,
though we assert this work is linking function agnostic.

1In many cases this is the time and location the primary instance was recorded at.
However, it may be different – for example we may wish to know the feature values
at the same location but 1 hour prior to the recorded time of the primary instance.

2.2 Reducing Datasets
To speed up the process of linking large spatio-temporal datasets,
data reduction techniques can be used. These aim to reduce the
quantity of data stored in a dataset whilst minimising the infor-
mation lost for a given scenario. Commonly used data reduction
techniques include instance and feature selection/engineering tech-
niques, such as Principle Components Analysis (PCA) [14]. These re-
duce the quantity of data to be processed by reducing the number of
instances or features in the dataset. However, these techniques can
remove important information from the supplementary datasets.
Other algorithms for reducing spatio-temporal data include the
IDEALEM [21] and ISABELA [12] algorithms, and a two-part algo-
rithm proposed by Pan et al. [13]. A discussion of these algorithms
can be found in literature [17].

One such reduction technique is the k-Dimensional Spatio-
Temporal Reduction (kD-STR) algorithm, which takes advantage of
the spatial and temporal autocorrelation present in spatio-temporal
data [17, 18]. The kD-STR algorithm is iterative and partitions a
dataset into partitions of similar instances, then replaces the in-
stances within each partition with a model of their feature values.
On each iteration, a heuristic function is used to decide between im-
proving an existing model and increasing the number of partitions
and models stored, with the choice that minimises the heuristic
value being taken. The heuristic function used in kD-STR balances
the error introduced by the reduction process with the decrease in
storage used by the reduced dataset. The error introduced is mea-
sured by reconstructing the original instances from the models and
measuring the difference between the original instances and their
estimated values. However, when linking datasets, which is the fo-
cus of this paper, minimising the reconstruction error of the original
dataset is less important than minimising the error incurred in the
feature engineering step of the data linking process. Furthermore,
kD-STR retains information about all instances during reduction,
yet for data linking purposes this may be unnecessary. Addressing
these two shortcomings is the focus of this paper.

3 DATA REDUCTION PROCESS FOR
SUPPLEMENTARY DATASETS

In the context of linking datasets, kD-STR can be used to reduce
supplementary datasets to speed up the linking process – a de-
scription and pseudocode of the kD-STR algorithm can be found
in Appendix A. To augment the primary dataset using the reduced
supplementary datasets, each primary instance is compared against
the location and time of the partitions in the reduced datasets rather
than each instance in the raw supplementary datasets. However, kD-
STR fails to take advantage of the characteristics of the primary and
supplementary datasets which may yield a more efficient reduction.
To overcome this weakness, we propose two changes to the kD-STR
reduction process: (i) a preprocessing step that reduces the spatial
and temporal resolution of the datasets where possible and removes
unnecessary information; (ii) an alternative kD-STR heuristic that
minimises the error incurred in the features engineered during the
linking process, and considers the spatio-temporal distribution of
the primary instances. These two changes are discussed in Sections
3.1 and 3.2 respectively, and the overall reduction process can be
seen in Algorithm 1.
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Algorithm 1: Reducing n supplementary datasets using
knowledge of Dprim

Data: Primary dataset Dprim and supplementary datasets
D1, ...,Dn

Result: The reduced datasets ⟨P1,M1⟩, ..., ⟨Pn,Mn⟩

1 rs ← spatialRes(Dprim)

2 rt ← temporalRes(Dprim)

3 Dprim′ ← sample(Dprim, rs , rt )

4 for 1 ≤ i ≤ n do
5 Sibound ← spatialBoundary(Di ,Dprim)

6 T ibound ← temporalBoundary(Di ,Dprim)

7 Di ← removeOutside(Di , S
i
bound,T

i
bound)

8 Di ← reduceRes(Di , rs , rt )

9 ⟨Pi ,Mi ⟩ ← alternativeKDSTR(Di ,Dprim′)

10 end

3.1 Pre-Processing Resolution Reduction
Given a primary dataset Dprim and n supplementary datasets
D1, ...,Dn , our aim is to remove any information in D1, ...,Dn that
is known to be irrelevant or unnecessary for Dprim. To achieve this,
we introduce a preprocessing step consisting of two parts to be
used prior to kD-STR. First, unnecessary instances are removed. For
a supplementary dataset Di , where 1 ≤ i ≤ n, a spatial boundary
Sibound = ⟨xb , xe ,yb ,ye ⟩ and temporal boundary T ibound = ⟨tb , te ⟩
are computed, where S is the spatial domain and T is the tempo-
ral domain. Forming the boundaries requires knowledge of the
instances in Dprim and Di , as well as knowledge of the furthest a
supplementary instance in Di can be to remain applicable to an
instance in Dprim. This knowledge may come from the spatial and
temporal distributions of the datasets (using measures such as the
maximum distance between any instance Dprim and its nearest
neighbour in Di or experimental variograms of the datasets), or
prior knowledge provided by the user. After the spatial and tempo-
ral boundaries are computed, all instances in Di that are located
outside of Sibound and T

i
bound are removed.

The second part of the preprocessing step removes unnecessary
resolution in Di . Consider a case in which the maximum distance
between any sensor in Di is 1.5 miles, and each sensor records
an instance every 15 minutes. If each sensor in Dprim is 20 miles
apart from its neighbours and records one instance per day, and
we wish to augment each instance ds ,t ∈ Dprim with the daily
mean value recorded at the nearest sensor to s , the resolution of
Di is unnecessarily high. We can therefore reduce the resolution
by removing some sensors in Di and aggregating the instances at
each sensor in Di to daily mean values.

After removing unnecessary information, each supplementary
dataset Di is reduced using the kD-STR algorithm with an alterna-
tive heuristic function as explained in Section 3.2.

3.2 kD-STR with Alternative Heuristic
Function

After removing the unnecessary information from each supple-
mentary dataset, the reduction process reduces each dataset using

kD-STR. However, the aim of reducing supplementary datasets is to
minimise the error incurred in the features engineered during the
linking process. This may not be the same as minimising the error
incurred in the original supplementary features. Thus, while the
heuristic function used in kD-STR minimises the information lost
in the original supplementary dataset, it ignores the error incurred
in the features engineered during linking. To overcome this, the
alternative heuristic function shown in Equation 1 is proposed.

h(Dprim′,Di , ⟨Pi ,Mi ⟩) = α · q(Di , ⟨Pi ,Mi ⟩)

+ (1 − α) · e(Dprim′, ⟨Pi ,Mi ⟩) (1)

Here, q(Di , ⟨Pi ,Mi ⟩) measures the ratio between the volume
of data required to store the reduced dataset and that required to
store the original dataset. Furthermore, e(Dprim′, ⟨Pi ,Mi ⟩)measures
the difference between the features engineered during the linking
process using the raw supplementary dataset Di versus those en-
gineered using the reduced supplementary dataset ⟨Pi ,Mi ⟩. The
parameter α is a weighting factor that balances the user’s desire for
minimised storage versus minimised error. This value is bounded
to the range [0, 1] and must be chosen before reducing the dataset.
Values of α close to 0 minimise error at the cost of increased stor-
age overhead by reducing the weight of q(Di , ⟨Pi ,Mi ⟩). Similarly,
values close to 1 prioritise storage reduction over incurred error by
reducing the weight of e(Dprim′, ⟨Pi ,Mi ⟩).

The functions used in Equation 1 are defined in Equations 2, 3 and
4. In Equation 3,D ′prim′ is a subsetDprim′ of the primary dataset after
it has been augmented using the reduced supplementary dataset
⟨Pi ,Mi ⟩,d

f
s ,t is the value of feature f for instanceds ,t ∈ Dprim′ , and

LFi is the set of features engineered using the raw supplementary
dataset Di . Finally, d

′ f
t ,s is the value of the same feature engineered

using the reduced supplementary dataset ⟨Pi ,Mi ⟩.

q(Di , ⟨Pi ,Mi ⟩) =
storaдe(⟨Pi ,Mi ⟩)

storaдe(Di )
(2)

e(Dprim′, ⟨Pi ,Mi ⟩) =
1
|LFi |

∑
f ∈LFi

ψ (f ,Dprim′,D
′
prim′)

range(f )
(3)

ψ (f ,Dprim′,D
′
prim′) =

√√√∑
ds ,t ∈Dprim′ (d

f
t ,s − d

′ f
s ,t )

2

|Dprim′ |
(4)

To calculate the error incurred by augmenting the primary dataset
with reduced supplementary datasets, the linking process for the
entire primary dataset must be completed. This means the linking
process we wish to speed up has to be completed at least once dur-
ing the reduction process. To overcome this issue, a sample of the
primary dataset that is representative of its spatial and temporal dis-
tributions is used, Dprim′ ⊂ Dprim. Since primary instances that are
close in space and time will be augmented by the same supplemen-
tary instances, a sample of the primary dataset that has the same
distribution of instances in space and time is sufficient for estimat-
ing the error incurred in the engineered features.2 Only partitions
that contain an instance from Dprim′ within their spatio-temporal
2Note that the feature values of the primary dataset are not important when creating
the sample, only the distribution of instance locations in space and time.
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bounds will be able to store more than 1 model coefficient. Thus, a
sample that maintains the spatio-temporal distribution is adequate.
Using a sample that is not representative of the spatio-temporal dis-
tribution of Dprim would result in information retention in ⟨Pi ,Mi ⟩

being disproportionately focused in areas and time periods that are
less relevant to the instances in Dprim.

One method for creating a representative sample that retains
the relative distribution in space and time is to use a stratified
sampling technique [8]. Alternatively, a sample of instances can
be chosen at random. Then, each instance in the sample can be
replaced if it is within γS spatial distance and γT temporal distance
of its nearest neighbour in the sample [7]. An appropriate sample
size or appropriate distancesγS andγT would retain the distribution
of instances in Dprim over space and time whilst minimising the
number of instances in the sample to aid quick reduction.

The overall process of reducing the supplementary datasets is
shown in Algorithm 1. Here, lines 1–3 calculate the spatial and
temporal resolutions of the primary dataset, and create a sample
of the dataset that is representative of its distribution in space and
time. Furthermore, lines 5–7 calculate the spatial and temporal
boundary of instances in Di that are applicable to Dprim. Finally,
line 8 reduces the spatial and temporal resolution of Di given the
resolution of Dprim, and line 9 performs kD-STR reduction on Di
using the alternative heuristic presented in Equation 1.

4 EXPERIMENTAL EVALUATION
To evaluate the impact of the alternative heuristic function, we aug-
mented a road pavement condition dataset with information from
air temperature, road traffic and rainfall datasets. Each instance in
the primary dataset contained several features measured on two
dates at a specific location. Therefore, the aim was to engineer fea-
tures about the air temperature, traffic and rainfall that occurred at
that location between the two dates defined for each instance. The
three supplementary datasets are described in Section 4.1. To pro-
vide a baseline for comparison, we augmented the primary dataset
using the raw supplementary datasets, and this process is described
in Section 4.2. For the purpose of analysing where information was
retained and lost, we did not perform the instance removal steps
of the alternative process (lines 5–8 of Algorithm 1). Furthermore,
we used the nearest neighbour and neighbourhood methods to
evaluate the alternative heuristic, however we believe this work to
be agnostic to the linking method used3.

Our aim was to test three hypotheses:
H1 Compared to the linked baseline, the features engineered

using the reduced datasets that were reduced using the al-
ternative heuristic function will be more accurate than the
datasets that were reduced using the original heuristic func-
tion. Since the alternative heuristic aims to minimise the
error incurred in the linking process rather than the recon-
struction of the original supplementary instances, this should
be the case.

H2 Compared to the original heuristic function, the alternative
heuristic function will prioritise information retention in

3Equation 3 calculates the difference between the original and reconstructed features
created by the linking method. Therefore, any linking method can be used as the error
is calculated using the difference in imputed values.

those partitions nearest to the instances in Di . That is, only
partitions which contain the spatial locations of the instances
in Di and overlap with the time periods of each instance will
store more than 1 model coefficient.

H3 When the original supplementary instances are reconstructed
from the reduced dataset, those instances that are far from
the locations and times of the primary instances will be less
accurately reconstructed than those that are close to the pri-
mary instances. Since those supplementary instances that
are far from the primary instances will not have been used
in the linking process by the alternative heuristic function,
the partitions in which they reside will not be modelled as
accurately as those that are used in the linking process.

4.1 Datasets
One primary dataset and three supplementary datasets were used
in this experiment:
• Road Pavement Condition (primary)
This dataset contained features about the condition of the
M1 northbound motorway in England between June 2016
and September 2017, and contained 2719 instances [4]. Each
instance related to a 10 meter section of road between a start
and end date. The mid-point of the road segment was used
as a single point to represent the location of the road section
in space.
• Air Temperature and Rainfall (supplementary)
These datasets were sourced from the Met Office Integrated
Data Archive System [1, 2], and contained all instances
recorded at 87 air temperature sensors and 69 rainfall sensors
in England in 2016 and 2017. Experimental variograms of
the daily mean air temperature and total daily precipitation
features can be seen in Figures 1a and 1b. The two datasets
contained 61,939 and 48,829 instances respectively.
• Road Traffic (supplementary)
This dataset was sourced from the Highways England Web-
TRIS dataset [3]. It contained the total daily vehicle count
and vehicle lengths at 155 sensors on the M1 northbound for
each day in 2016 and 2017. For simplicity, we only considered
sensors on the main carriageway and omitted sensors on
entry and exit slip-roads. An experimental variogram of the
total daily vehicle count feature can be seen in Figure 1c.
The dataset contained 69,715 instances.

4.2 Linked Data Baseline
To create a baseline linked dataset, we augmented the instances
in the primary dataset using the raw supplementary datasets. For
each instance in the primary dataset, the mean daily min, mean
and max air temperature, mean daily rainfall and mean daily traffic
count were imputed at the location of the primary instance between
the start and end date of that instance. To impute these values, we
tested the neighbourhood and nearest neighbour (NN) methods,
and their inverse distance weighted (IDW) variants, with a range
of parameter values to see which parameter values yielded the
most accurate imputations. This resulted in a neighbourhood of
40 miles and 0 days being used to impute the air temperature and
rainfall for each primary instance when using the neighbourhood
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(a) Daily mean temperature

(b) Daily total precipitation

(c) Daily total traffic count

Figure 1: Experimental variograms of the daily mean tem-
perature, total precipitation and traffic count features from
the air temperature, rainfall and traffic datasets.

and IDW neighbourhood methods, and neighbourhood of 20 miles
for the traffic dataset. For the NN and IDW NN techniques, a value
of k = 5 was found to be most accurate for the air temperature and
traffic datasets, whilst a value of k = 1 was most accurate for the
rainfall dataset. Using these techniques, a baseline for each of the
four linking methods was created.

5 RESULTS
After reducing each of the supplementary datasets using kD-STR
with the original and alternative heuristic functions, the primary

Figure 2: Time taken to link primary and supplementary
datasets with NNmethod as baseline. Results are shown for
the original and alternative heuristic functions.

dataset was augmented using the reduced datasets. For each pri-
mary instance, supplementary instances were imputed from each
of the reduced datasets at the location of the primary instance for
each day between the start and end dates of the primary instance.

Augmenting the primary dataset using the reduced supplemen-
tary datasets was found to be faster than using the raw supple-
mentary datasets. Using the four baseline linking methods on the
raw datasets described in Section 4.2, the linking process took be-
tween 8,067 and 13,334 seconds. In comparison, augmenting the
primary dataset using the reduced datasets took between 308 and
329 seconds using kD-STR when α = 0.9, a value which indicates a
strong preference for reducing the quantity of data stored at the
cost of reduced accuracy. When α = 0.01, indicating a preference to
retain accuracy at the cost of data storage, the linking took between
3,593 and 3,698 seconds. The time taken to link the reduced sup-
plementary datasets for different values of α are shown in Figure
2. These tests were performed on an isolated workstation with an
Intel i5-8700k and 48GB RAM, though only a single process was
used.

In the remainder of this section we present the results of test-
ing each of our three hypotheses. In Section 5.1 we discuss the
error incurred in the linked features by reducing the supplemen-
tary datasets prior to linking, addressing hypothesis H1. In Section
5.2 we discuss the retention of information in space and time, ad-
dressing H2. Finally, in Section 5.3 we discuss the error incurred in
the raw datasets, addressing H3.

5.1 Error incurred in the Linked Features
By reducing the supplementary datasets, the feature values engi-
neered during linking were different to those engineered using
the raw supplementary datasets. For example, Figure 3 shows the
distribution of feature values for the mean temperature and total
precipitation features. As hypothesised, we found that decreasing
the value of α , indicating a stronger preference for information
retention, increased the number of partitions and models used to
store each of the reduced datasets. In all cases, this allowed the
distribution of the features engineered using the reduced datasets to
better match the distribution of features engineered using the raw
dataset, either by more accurately matching the range of feature
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values observed or more closely matching the broad shape of the
distribution.

In most cases, decreasing the value of α lead to a decrease in the
maximum error between features engineered using the reduced and
raw datasets. As shown in Figure 4, themore accurate distribution of
engineered values is matched by a more accurate engineered value
for each instance when α = 0.01 compared to α = 0.9. However,
in many cases, such as the Min Temp and Max Temp features, the
median and third quartile errors increased when α = 0.01. This is
indicative of the engineered feature values better matching for some
instances but not all as the output models try to more accurately
capture the nuances of the supplementary dataset features. We note
that higher percentage error of the Total Precipitation feature is
caused by the high spatial and temporal variance of the rainfall
dataset compared to the lower error and lower spatial variance of
the air temperature dataset. For the traffic dataset, high spatial and
temporal variance of the data made increasing the number of parti-
tions too costly in storage. Thus, when α = 0.01, which indicates a
strong preference for reduced error at the cost of increased storage
volume, the number of partitions stored for the traffic dataset was
still 1 and the error incurred was approximately the same as when
α = 0.9.

A comparison of the storage used by each of the three supple-
mentary datasets and the error in features they are used to engineer
in the linking process can be seen in Figure 5. Each subfigure shows
the error versus storage for kD-STR using the original and alter-
native heuristics on each of the datasets. We have also split the
results into those reductions that output 1 partition versus those
that output more than 1 partition. As expected, the two heuristics
were unable to prioritise information retention in the partitions
most applicable to the primary dataset when the reduced datasets
contained only 1 partition. However, when more than 1 partition
was stored, the alternative heuristic was able to prioritise informa-
tion retention in just those partitions that overlap with the areas
and time periods that are applicable to the primary dataset. In our
results, no reduced dataset that had been reduced using the original
heuristic was able to achieve a lower error and lower storage cost
than a dataset reduced using the alternative heuristic. In Section
5.2 we show further evidence that the alternative heuristic retained
information only in the areas and time periods applicable to the
primary dataset.

5.2 Retention of Information in Space and
Time

To explore where in space and time kD-STR used models with a
higher number of coefficients (and thus retained more informa-
tion), we plotted the boundaries of the partitions that stored more
than 1 model coefficient in the reduced datasets. Figure 6 shows
the locations of these partitions in time when both heuristic func-
tions were used to reduce the air temperature dataset. As shown,
every partition output by kD-STR with the alternative heuristic
overlapped with the time period for which instances exist in the
primary dataset. That is, only partitions in the reduced dataset that
were linked to the primary dataset during linking stored more than
1 model coefficient. In contrast, the results for the original heuristic
function show that many partitions that were not applicable to the

primary dataset have complex partitions, meaning kD-STR chose
to retain information in time periods that were not useful to the
primary dataset.

Similar conclusions were drawn from all three supplementary
datasets. The low variation in the spatial domain of the air tempera-
ture dataset resulted in partitions that cover large spatial areas and
short time periods. This meant it was likely any partition would
overlap with the area that is applicable to the primary dataset.
However, the high variation in the temporal domain resulted in
partitions that only cover a small number of time intervals, giving
the results shown in Figure 6. For the reduced rainfall and traffic
datasets, the variance of the datasets in space and time resulted
partitions with a larger range of spatial areas and time periods.
Again, no partition stored more than 1 model coefficient unless
it intersected the area and time period applicable to the primary
dataset when reduced with the alternative heuristic, but several par-
titions that did not intersect stored more than 1 model coefficient
when reduced with the original heuristic.

5.3 Error incurred in the Original Features
The error incurred by reducing the supplementary datasets us-
ing the alternative heuristic function was higher or approximately
equal to reducing using the original heuristic function given approx-
imately the same storage volume used. This result only occurred
when the number of partitions store was above 1, as discussed
in Section 5.1. Figure 7 shows the error incurred when the origi-
nal supplementary instances were reconstructed from the reduced
datasets versus the storage used by the reduced dataset. As shown,
no reduced dataset that was reduced using the alternative heuristic
achieved a more accurate reconstruction of the original instances
whilst requiring less storage than a dataset reduced using the origi-
nal heuristic. A more direct comparison for the mean temperature
can be seen in Figure 8, where the error incurred by the original
heuristic function was consistently less than or equal to the error in-
curred by the alternative heuristic function. Note that the exception
of α = 0.5 was caused by the alternative heuristic function using
more than 1 partition whilst the original heuristic had increased
the number of partitions used4.

6 DISCUSSION
By reducing supplementary datasets using kD-STR, the dataset
linking process can be sped up. Though the reduced datasets do
not offer a perfect representation of the features engineered using
the raw datasets, the accuracy achieved can be sufficient for many
use cases given the speedup offered for linking tasks. However, by
using the alternative heuristic described in this paper, a reduction
can be achieved that yields similar or better accuracy of feature
engineering in the linking process. More specifically, our key find-
ings were: (i) the error incurred in the feature engineering step of
data linking can be reduced by using our alternative heuristic; (ii)
however, the reconstruction error of the original supplementary
features can be worsened; (iii) when using the alternative heuristic,
information retention is focused on those partitions that are used

4When reducing the supplementary datasets using kD-STR with the original heuristic
function versus the alternative heuristic function, we found the relationship between
α , the error metric and the storage metric was different.
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(a) Mean temperature feature

(b) Total precipitation feature

Figure 3: Histograms of the mean temperature and total precipitation features engineered using the NN baseline method and
raw supplementary datasets, and estimating at the road survey location using the reduced dataset, after reduction using the
alternative heuristic function with α = 0.01 and α = 0.9.

Figure 4: Error incurred by engineering features using the reduced datasets (created using the alternative heuristic function).
Results are shown for α = 0.01 and α = 0.9.

during the linking process. Each of these are described further in
this section.

First, we found that the alternative heuristic led to a lower maxi-
mum error observed in the engineered features compared to the
original heuristic function, when the number of partitions output
is greater than 1. Furthermore, the original heuristic was not more
accurate compared to the alternative heuristic, given approximately
the same storage volume used. This lack of counter-result does not
prove hypothesis H1, yet our results do support the hypothesis.

Second, we found that supplementary instances that were far
from the primary instances were less accurately reconstructed af-
ter being reduced with the alternative heuristic, compared to the

original heuristic. This conclusion supports hypothesis H3 and no
result showed the alternative heuristic yielding a more accurate
reconstruction of the original supplementary features compared to
the original heuristic.

Finally, no partition in the reduced dataset that did not over-
lap with the primary instances stored more than a single model
coefficient when the alternative heuristic was used, supporting
hypothesis H2. In comparison, multiple partitions that did not over-
lap with the area applicable to the primary dataset retained more
than 1 model heuristic when the original heuristic was used. These
coefficients retained information that was not useful for the link-
ing process, giving a less efficient reduction of the supplementary
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(a) Daily mean temperature (b) Daily total precipitation (c) Daily total traffic count

Figure 5: Error in engineered features versus storage used by the reduced datasets created using the original and alternative
heuristic functions. Note, when the dataset contained 1 partition we expect the reduced datasets to achieve approximately the
same results, and only expect different results when the number of partitions is greater than 1.

(a) Alternative heuristic function

(b) Original heuristic function

Figure 6: Temporal locations of partitions with more than
one model coefficient for the air temperature dataset.

datasets. However, the variance of the instances within the partition
also affected the number model coefficients stored for that partition.
An unexplored question remains – to what extent was the num-
ber of coefficients stored for a partition attributed to magnitude of
model improvement versus the number of primary instances that
model was linked to?

Whilst these results are useful and show the utility of the alter-
native heuristic function, in this paper we only considered cases

where the spatial and temporal distributions of the primary dataset
are known prior to reduction. In several scenarios, this distribution
can be inferred from previous samples of data. For example, weather
and traffic data, such as the datasets used for evaluation in this pa-
per, are stored in monthly and yearly datasets. Since the distribution
of road sections does not change significantly from year to year, we
may use the spatio-temporal distribution of a road network from a
previous year during the reduction of the latest weather and traffic
data. However, in cases where the spatio-temporal distribution may
not be known, it may be beneficial to retain information in areas
and time periods near to the area/time period applicable to the
primary dataset, as well as those directly applicable. Furthermore,
since the alternative heuristic caused a significant slowdown in the
reduction process, estimating the feature engineering error without
requiring the linking procedure to be completed would allow for a
faster reduction process.

7 CONCLUSION
The growth of urban data has led to datasets that are too large to be
processed on a single machine, yet they contain high redundancy
and significant autocorrelation. In common dataset linking scenar-
ios, the quantity of data present can make the linking process slow
or infeasible. Whilst the kD-STR algorithm [17, 18] has been shown
to be effective at reducing the quantity of data in a spatio-temporal
dataset, it does not consider the properties of a primary dataset
when reducing a supplementary dataset. This can lead to a less
efficient reduction that minimises information loss in areas and
time periods not applicable to the primary dataset whilst incurring
unnecessary error in those that are applicable.

In this paper we presented a preprocessing step and alternative
heuristic function for kD-STR that overcomes these issues. The pre-
processing step removes unnecessary supplementary information
and the alternative heuristic, unlike the original kD-STR heuristic,
considers the error incurred in the feature engineering stage of the
data linking process. The alternative heuristic was demonstrated
to give a reduced dataset that was more accurate when using the
reduced dataset to augment a primary dataset, whilst using compa-
rable or lower storage volumes than the original kD-STR heuristic.
However, this was shown to give a less accurate reconstruction of
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(a) Daily mean temperature (b) Daily total precipitation (c) Daily total traffic count

Figure 7: Error in original supplementary dataset features versus storage used by the reduced datasets created using the original
and alternative heuristic functions. Results are shown only for those cases where the reduced datasets contained more than 1
partition.

Figure 8: Error in mean temperature feature for the original
supplementary dataset after being reconstructed from the
reduced air temperature dataset. Results are shown for the
alternative and original heuristic functions.

the original dataset in those partitions not applicable to the primary
dataset.

These results improve the error incurred by kD-STR which con-
siderably reduces the time taken to link spatio-temporal datasets.
Such speedups improve the efficiency of data analysis in both re-
search and industry, and allow greater quantities of data to be
analysed. Future work in this area could focus on improving the al-
ternative heuristic for scenarios where the primary dataset’s spatial
and temporal distributions are unknown or estimated. Adaptations
of kD-STR for scenarios other than dataset linking could also be
considered, as well as ways of making the algorithm distributed
with the aim of increasing the size of the dataset that can be reduced.
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APPENDIX
A KD-STR ALGORITHM
The kD-STR algorithm, adapted to use the new heuristic presented
in this paper, is shown in Algorithm 2. The algorithm begins by
forming a partition tree over Di . Then, beginning at the root of the
tree with all instances belonging to a single partition, all data within
the partition is modelled using a single model coefficient. Then, the
heuristic value (Equation 1) is calculated for this reduction. Next,
kD-STR iteratively decides between increasing the number of par-
titions in the reduced dataset and the number of model coefficients
stored for each partition. The algorithm stops when the heuristic
cannot be minimised further, i.e., h1 ≥ h and h2 ≥ h, and the set of
partitions and models ⟨Pi ,Mi ⟩ is output.

The kD-STR algorithm takes a supplementary dataset, sample
of the primary dataset and the parameter α as input. Here, α is a
weighting coefficient that balances reduction in storage with reduc-
tion in introduced error (NRMSE), and 0 ≤ α ≤ 1. Since a value of
α = 0 indicates a preference for minimising the error introduced
with no consideration of the storage used, kD-STR would not stop
iterating until the error (Equation 3) is 0. Such a perfect model
may be unrealistic and less efficient than storing the original data.
Conversely, when α = 1, both increasing the complexity of a model
and increasing the number of partitions would increase the storage
used, thus only a single partition and model coefficient is stored for
the entire dataset. Both of these scenarios may not be useful and so
these values should be avoided for α .

More information about the kD-STR algorithm can be found in
literature [17, 18].

Algorithm 2: The kD-STR algorithm for reducing supple-
mentary datasets
Input: Di ,Dprim′,α
Output: ⟨Pi ,Mi ⟩

1 clusterTree = cluster(Di );
2 numberClusters = 1;
3 Pi = findPartitions(Di , clusterTree, numberClusters);
4 Mi = {} ; // Initialise the set of models to the empty set

5 for pj in Pi do
6 mj = model(Di , j , 1) ; // Model the data in partition pj

from Di using the simplest complexity

7 Mi .add(mj );
8 h = heuristic(Di ,Dprim′, Pi ,Mi ) ; // Calculate heuristic for 1

partition and simple model

// Now iterate until heuristic h is minimised

9 do
// First, check if increasing an existing model’s

complexity minimises h further

10 h1 = h;
11 for pj in Pi do
12 M ′i =Mi ;
13 m′j = model(Di , j ,mj .complexity + 1);
14 M ′i .replace(mj ,m

′
j ) ; // Replace mj with m′j in M ′i

15 h′ = heuristic(Di ,Dprim′, Pi ,M
′
i );

16 if h′ < h1 then
17 h1 = h′;
18 Mbest = M ′i ;

// Second, check if increasing the number of partitions

minimises h further

19 P ′i = findPartitions(Di , clusterTree, numberClusters+1);
20 M ′′i = {}; // Initialise the set of models to the empty set

21 for pj in P ′i do
22 if pj in Pi then
23 M ′′i .add(mj ) ; // Add mj ∈ Mi to M ′′i

24 else
25 m′′j = model(Di , j , 1);
26 M ′′i .add(m

′′
j );

27 h2 = heuristic(Di ,Dprim′, P
′
i ,M

′′
i );

// Finally, if increasing the number of partitions, or the

complexity of an existing model, is more optimal than

h, take that choice

28 if h1 < h2 and h1 < h then
29 Mi = Mbest;
30 h = h1;
31 else if h2 < h1 and h2 < h then
32 Pi = P ′i ;
33 Mi = M ′′i ;
34 h = h2;
35 numberClusters = numberClusters + 1;

36 while h1 < h or h2 < h;
37 return Pi ,Mi
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